Connect with us
Finance Digest is a leading online platform for finance and business news, providing insights on banking, finance, technology, investing,trading, insurance, fintech, and more. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.


Building upon the needs of their customers, some of whom have dozens and even hundreds of users of the software, Dataiku releases a new version that establishes it as a central hub for the development of advanced data science, machine learning, and analytics products.

With a wide range of new and improved features aimed at making data science, machine learning, and advanced analytics accessible to organizations as a whole, data science software maker Dataiku has today released Dataiku 4.1. The new and improved software platform acts as a central hub for technical and non-technical users to prototype, build, scale, deploy, and manage advanced data science products.

“We are focused on building a platform that is a single hub for an enterprise’s data science and machine learning development – that’s what this release reflects,” said Florian Douetteau, CEO of Dataiku. “Many of our customers already use Dataiku with hundreds of users from all different backgrounds, from data engineers, to developers, to non-technical analysts, to perform advanced analytics and to develop data science solutions. This latest release strengthens enterprise scale development and deployment of these solutions among and across teams.”

A new Dataiku with the same great functionalities, built for scale

Building upon the needs of Dataiku customers who have hundreds of users across their organizations around the world relying on the software, Dataiku 4.1 has been designed to accelerate scalable deployment while maintaining its powerful core functionalities such as:

  • point-and-click interfaces for data preparation and analysis
  • customizable tools to facilitate cutting-edge and efficient data science
  • straightforward solutions for deploying, monitoring, and governing models in production.

In its latest release, Dataiku is introducing new features that further expand its capabilities as a single platform for everyone, including coders and clickers, spread across any sized organization around the world. “This release plays to our strength of enabling our largest customers to propagate data science expertise throughout the organization,” said Douetteau. “In fact, organizations who deploy Dataiku at scale have on average a 4:1 ratio of non-coding data specialists to data scientists using Dataiku.”

Data preparation tools for coders and non-coders

Dataiku 4.1 introduces new data preparation “recipes” within the Dataiku graphical interface that bring powerful analytical functionalities to non-coders, including pivoting, sorting, and splitting datasets.

For coders, the latest release brings advanced visualization libraries like RShiny and Bokeh for rapidly creating engaging interactive web applications within dashboards. Additionally, RMarkdown reports let users easily share their results outside of Dataiku. 

Live Model Competitions – Compare models in real-time

With Dataiku’s “live model competition,” users compare the performance of a batch of machine learning models competing in real time without waiting for the entire training of the model. This reduces the training time and resources used by interrupting or resuming the competition once it yields satisfactory insights.

Additionally, model ensembling, which exploits the strengths of various models by combining different algorithms, is now possible without writing a single line of code.

Isolated coding environments for project stability

It is common for an organization to have many projects using different versions of Python, R, and libraries. Dataiku 4.1 now supports reproducible environments, which properly isolate projects and reproduce the runtime condition throughout the deployment phase. This alleviates the worry about one individual upgrading a package, because deployed code will remain stable.

Dataiku 4.1 bolsters the product’s end-to-end reach by introducing a versatile API node that scores models, runs custom Python and R functions, and accesses to datasets via parameterized SQL and custom functions. Additionally, the new release provides an extended toolkit for plugins.

To learn more about all of the features of Dataiku 4.1

To learn more about scaling analytics and machine learning capabilities, join Dataiku along with industry leaders at the EGG2017 conferencefor presentations on cutting-edge approaches and methodologies on non-conforming data science in New York City on November 30.

Continue Reading

Recent Posts